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We study how the dynamic equilibrium of the reversible protein–
protein-binding network in yeast Saccharomyces cerevisiae re-
sponds to large changes in abundances of individual proteins. The
magnitude of shifts between free and bound concentrations of
their immediate and more distant neighbors in the network is
influenced by such factors as the network topology, the distribu-
tion of protein concentrations among its nodes, and the average
binding strength. Our primary conclusion is that, on average, the
effects of a perturbation are strongly localized and exponentially
decay with the network distance away from the perturbed node,
which explains why, despite globally connected topology, individ-
ual functional modules in such networks are able to operate fairly
independently. We also found that under specific favorable con-
ditions, realized in a significant number of paths in the yeast
network, concentration perturbations can selectively propagate
over considerable network distances (up to four steps). Such
‘‘action-at-a-distance’’ requires high concentrations of het-
erodimers along the path as well as low free (unbound) concen-
tration of intermediate proteins.

dissociation constant � genetic interactions � law of mass action �
small-world networks � binding equilibrium

Recent high-throughput experiments performed in a wide vari-
ety of organisms revealed networks of protein–protein physical

interactions (PPI) that are interconnected on a genome-wide scale.
In such ‘‘small-world’’ PPI networks, most pairs of nodes can be
linked to each other by relatively short chains of interactions
involving just a few intermediate proteins (1). Although globally
connected architecture facilitates biological signaling and possibly
ensures a robust functioning of the cell after a random failure of its
components (2), it also presents a potential problem by providing
a conduit for propagation of undesirable cross-talk between indi-
vidual functional modules and pathways. Indeed, large (severalfold)
changes in proteins’ levels in the course of activation or repression
of a certain functional module affect bound concentrations of their
immediate interaction partners. These changes have a potential to
cascade down a small-world PPI network affecting the equilibrium
between bound and unbound concentrations of progressively more
distant neighbors, including those in other functional modules.
Most often such indiscriminate propagation would represent an
undesirable effect that has to be either tolerated or corrected by the
cell. On the other hand, a controlled transduction of reversible
concentration changes along specific conduits may be used for
biologically meaningful signaling and regulation. A routine and well
known example of such regulation is inactivation of a protein by
sequestration with its strong binding partner.

In this study, we quantitatively investigate how large concentra-
tion changes propagate in the PPI network of yeast S. cerevisiae. We
focus on the noncatalytic or reversible binding interactions whose
equilibrium is governed by the law of mass action (LMA) and do
not consider irreversible, catalytic processes such as protein phos-
phorylation and dephosphorylation, proteolytic cleavage, etc. Al-
though such catalytic interactions constitute the most common and
best studied mechanism of intracellular signaling, they represent

only a rather small minority of all PPI (for example, only �5% of
links in the yeast network used in our study involve a kinase).

Furthermore, the balance between free and bound concentra-
tions of proteins matters even for irreversible (catalytic) interac-
tions. For example, the rate of a phosphorylation reaction depends
on the availability of free kinases and substrate proteins, which are
both controlled by the LMA equilibrium calculated here. Thus,
perturbations of equilibrium concentrations considered in this
study could be spread even further by other mechanisms such as
transcriptional and translational regulation and irreversible post-
translational protein modifications.

Further information is available in supporting information (SI)
Appendix, SI Figs. 7–10, and SI Tables 2–6.

Results
To illustrate general principles on a concrete example, in this study,
we used a highly curated genome-wide network of PPI in yeast (S.
cerevisiae), which, according to the BIOGRID database (3), were
independently confirmed in at least two publications. We combined
this network with a genome-wide data set of protein abundances in
the log-phase growth in rich medium, measured by the TAP-tagged
Western blotting technique (4). Average protein concentrations in
this data set range between 50 and 1,000,000 molecules per cell with
the median value �3,000 molecules per cell. After keeping only the
interactions between proteins with known concentrations, we were
left with 4,185 binding interactions among 1,740 proteins (Table 2).
The BIOGRID database (3) lists all interactions as pairwise and
thus lacks information about multiprotein complexes larger than
dimers. Thus, in the main part of this study, we consider only
homodimers and heterodimers and ignore the formation of higher-
order complexes. In SI Appendix, we show that the reliable data on
multiprotein complexes can easily be incorporated into our analysis.
Furthermore, we demonstrate that taking into account such com-
plexes leaves our results virtually unchanged (see SI Table 3 and SI
Fig. 9).

The state-of-the-art genome-wide PPI data sets lack information
on dissociation constants Kij of individual interactions. The only
implicit assumption is that the binding is sufficiently strong to be
detectable by a particular experimental technique [some tentative
bounds on dissociation constants detectable by different techniques
were reported recently (5)]. A rough estimate of the average binding
strength in functional protein–protein interactions could be ob-
tained from the PINT database (6). This database contains �400
experimentally measured dissociation constants between wild-type
proteins from a variety of organisms. In agreement with the
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predictions of refs. 7 and 8, the histogram of these dissociation
constants has an approximately log-normal shape. The average
relevant for our calculations is that of the association constant
�1/Kij� � 1/(5 nM). Common sense dictates that the dissociation
constant of a functional binding between a pair of proteins should
increase with their abundances. The majority of specific physical
interactions between proteins are neither too weak (to ensure a
considerable number of bound complexes) nor unnecessarily
strong. Indeed, there is little evolutionary sense in increasing the
binding strength between a pair of proteins beyond the point when
both proteins (or at least the rate-limiting one) spend most of their
time in the bound state. The balance between these two opposing
requirements is achieved by the value of dissociation constant
Kij equal to a fixed fraction of the largest of the two abundances Ci
and Cj of interacting proteins. In some of our simulations, we used
Kij � max(Ci, Cj)/20 in which case the average association constant
nicely agrees with its empirical value [1/(5 nM)] observed in the
PINT database (6). In addition to this, perhaps, more realistic
assignment of dissociation constants, we also simulated binding
networks in which dissociation constants of all 4,185 edges in our
network are equal to each other and given by 1 nM, 10 nM, 100 nM,
and 1 �M.

Numerical Calculation of Bound and Free (Unbound) Equilibrium
Concentrations. The LMA relates the free (unbound) concentration
Fi of a protein to its experimentally known (4) total (bound and
unbound) concentration Ci as

Fi �
Ci

1 � �j Fj/Kij
. [1]

Here the sum is over all specific binding partners of the protein i
with free concentrations Fj and dissociation constants Kij. Although
in the general case these nonlinear equations do not allow for an
analytical solution for Fi, they readily are solved numerically, e.g.,
by successive iterations.

Concentration-Coupled Proteins. To investigate how large changes in
abundances of individual protein affect the equilibrium throughout
the PPI network, we performed a systematic numerical study in
which we recalculated the equilibrium free concentrations of all
protein nodes after a 2-fold increase in the total concentration of
just one of them: Ci3 2Ci. This process was repeated for the source
of 2-fold perturbation spanning the set of all 1,740 of proteins in our
network.§

The magnitude of the initial perturbation was selected to be
representative of a typical shift in gene expression levels or protein
abundances after a change in external or internal conditions. Thus,
here we simulate the propagation of functionally relevant changes
in protein concentrations and not that of background stochastic
fluctuations. A change in the free concentration Fj of another
protein was deemed to be significant if it exceeded the 20% level,
which according to ref. 9 is the average magnitude of cell-to-cell
variability of protein abundances in yeast. We refer to such protein
pairs i 3 j as ‘‘concentration-coupled.’’ The detection threshold
could be raised simultaneously with the magnitude of the initial
perturbation. For example, we found that the list of concentration-
coupled pairs changes very little if instead of 2-fold (�100%)
perturbation and the 20% detection threshold one applies a 6-
fold (�500%) initial perturbation and 2-fold (100%) detection
threshold.

In general, we found that lists of concentration-coupled proteins

calculated for different assignments of dissociation constants
strongly overlap with each other. For example, more than 80% of
concentration-coupled pairs observed for the variable Kij � max(Ci,
Cj)/20 assignment described above also were detected for the
uniform assignment Kij � const � 10 nM (for more details, see SI
Table 4) This relative robustness of our results allowed us to use the
latter conceptually simplest case to illustrate our findings in the rest
of the article.

The complete list of concentration-coupled pairs is included in SI
Table 2. Given the incompleteness and uncertainty in our knowl-
edge of the network topology, protein abundances, and values of
dissociation constants, these lists provide only a rough estimate of
the actual magnitude of perturbations that could be measured
experimentally.

Central Observations. We found that

Y On average, the magnitude of cascading changes in equilibrium
free concentrations exponentially decays with the distance from
the source of a perturbation, which explains why, despite a
globally connected topology, individual modules in such net-
works are able to function fairly independently.

Y Nevertheless, specific favorable conditions identified in our study
cause perturbations to selectively affect proteins at considerable
network distances (sometimes as far as four steps away from the
source). This finding indicates that, in general, such cascading
changes could not be neglected when evaluating the conse-
quences of systematic changes in protein levels, e.g., in response
to environmental factors or in gene knockout experiments.
Conditions favorable for propagation of perturbations combine
high yet monotonically decreasing concentrations of all het-
erodimers along the path with low free (unbound) concentra-
tions of intermediate proteins. Although reversible protein-
binding links are symmetric, the propagation of concentration
changes usually is asymmetric with the preferential direction
pointing down the gradient in the total concentrations of
proteins.

Examples of Multistep Cascading Changes. In Fig. 1, we illustrate
these observations by using two examples. In each of these cases, the
2-fold increase in the abundance of just one protein (marked with
the yellow circle in the center of both Fig. 1 A and B) has
significantly (�20%) affected equilibrium free concentrations of a
whole cluster of proteins some as far as four steps away from the
source of the perturbation. However, the propagation beyond
immediate neighbors is rather specific. For example, in the case of
SUP35 (Fig. 1A), only 1 of 169 of its third nearest neighbors were
affected above the 20% level. Note that changes in free concen-
trations generally sign-alternate with the network distance from the
source. Indeed, free concentrations of immediate binding partners
of the perturbed protein usually drop as more of them become
bound in heterodimers with it. This, in turn, lowers concentrations
of the next-nearest heterodimers and thus increases free concen-
trations of proteins at distance two from the source of perturbation,
and so on.

Exponential Decay with the Network Distance. The results of our
quantitative network-wide analysis of these effects are summarized
in Fig. 2 and Table 1. From Fig. 2, it can be concluded that the
fraction of proteins with significantly affected free concentrations
rapidly (exponentially) decays with the length L of the shortest path
(network distance) from the perturbed protein. The same state-
ment holds true for bound concentrations if the distance is mea-
sured as the shortest path from the perturbed protein to any of the
two proteins forming a heterodimer. Thus, on average, the prop-
agation of concentration changes along the PPI network indeed is
considerably dampened. On the other hand, from Table 1 it can be
concluded that the total number of multistep chains along which

§As an alternative to this computationally expensive approach we also tried the linear
response matrix formalism (11), relating small changes in Fj to the ones in Ci. We found the
linear response algorithm to be much less computationally expensive, although still
providing remarkably good approximation to directly computed results even for large
changes in protein levels.
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concentration changes propagate with little attenuation remains
significant for all but the largest values of the dissociation constant.
These two observations do not contradict each other because the
number of proteins separated by distance L (the last column in
Table 1) rapidly grows with L.

Conditions Favoring the Multistep Propagation of Perturbations.
What conditions favor the multistep propagation of perturbations
along particular channels? In Fig. 3A, we show a group of highly
abundant proteins along with all binding interactions between
them. Then in Fig. 3B, we show only those interactions that
according to our LMA calculation give rise to highly abundant
heterodimers (equilibrium concentration �1,000 per cell), which
breaks the densely interconnected subnetwork drawn in Fig. 3A into
10 mutually isolated clusters. Some of these clusters contain pro-
nounced linear chains that serve as conduits for propagation of
concentration perturbations. The fact that perturbations indeed
tend to propagate via highly abundant heterodimers is illustrated in
Fig. 3C, where arrows correspond to concentration-coupled nearest
neighbors A3B. Evidently, the edges in Fig. 3 B and C largely (but
not completely) coincide. Additionally, Fig. 3C defines the pre-
ferred direction of propagation of perturbations from a more
abundant protein to its less abundant binding partners.

To further investigate what causes concentration changes to
propagate along particular channels, we took a closer look at eight
three-step chains A3A13A23 B with the largest magnitude of
perturbation of the last protein B (2-fold detection threshold after
a 2-fold initial perturbation). The identification of intermediate
proteins A1 and A2 was made by a simple optimization algorithm
searching for the largest overall magnitude of intermediate pertur-
bations along all possible paths connecting A and B.

Inspection of the parameters of these chains shown in Fig. 4
allows one to conjecture that for a successful transduction of
concentration changes, the following conditions should be satisfied:

Y Heterodimers along the whole path have to be of sufficiently high
concentration Dij.

Y Intermediate proteins have to be highly sequestered. That is
to say, to reduce buffering effects, free-to-total concentration
ratios Fi/Ci should be sufficiently low for all but the last protein
in the chain.

Y Total concentrations Ci should decrease gradually in the direc-
tion of propagation. Thus, propagation of perturbations along
virtually all of these long conduits is unidirectional and follows
the gradient of concentration changes (a related concept of a
‘‘gradient network’’ was proposed for technological networks in
ref. 10).

Y Free concentrations Fi should alternate between relatively high
and relatively low values in such a way that free concentrations
of proteins at steps 2 and 4 have enough ‘‘room’’ to go down. The
two apparent exceptions to this rule visible in Fig. 4 may be
optimized to respond to a drop (instead of increase) in the level
of the first protein.
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Fig. 2. Indiscriminate propagation of concentration perturbations is sup-
pressed exponentially. The fraction of proteins with free concentrations af-
fected by �20% among all proteins at network distance L from the perturbed
protein. Different curves correspond to simulations with Kij � const � 1 nM
(filled circles), 10 nM (open squares), 0.1 �M (filled diamonds), and 1 �M (open
triangles).

Table 1. The number of concentration-coupled pairs of yeast
proteins separated by network distance L

L Var. 5 nM 1 nM 10 nM 0.1 �M 1 �M All

1 2,003 2,469 1,915 1,184 387 8,168
2 415 1,195 653 206 71 29,880
3 15 159 49 8 0 87,772
4 2 60 19 0 0 228,026
5 0 3 0 0 0 396,608

Numerical simulations (2-fold initial perturbation, 20% detection thresh-
old) were performed for different assignment of dissociation constants: Kij �
max(Ci, Cj) � 20 (column 2), Kij � const � 1 nM, 10 nM, 0.1 �M, and 1�M
(columns 3–6). Column 7 lists the total number of protein pairs at distance L.
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Fig. 1. Two cases of propagation of large concentration changes in the yeast
protein-binding network. The total (bound and unbound) concentration of the
protein marked with the yellow circle [the SUP35 protein (A); the SEC27 protein
(B)] was increased 2-fold from its wild-type value in the rich growth medium (4).
Red and green circles mark all other proteins whose equilibrium free (unbound)
concentrations have increased (green) or decreased (red) by �20%. The area of
each circle is proportional to the logarithm of the change in free concentration.
Edges show all physical interactions among this group of proteins with the shade
of gray proportional to the logarithm of the equilibrium concentration of the
corresponding dimer calculated for Kij � const � 10 nM.
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These findings are in agreement with our more detailed numerical
and analytical analysis of propagation of fluctuations presented in
ref. 11 and illustrated for simple networks in SI Appendix. In ref. 11,
we demonstrated that the linear response of the LMA equilibrium
to small changes in protein abundances could be mapped approx-
imately to a current flow in the resistor network in which het-
erodimer concentrations play the role of conductivities (which need
to be large for a good transmission), whereas high Fi/Ci ratios result
in the net loss of the perturbation ‘‘current’’ on such nodes and thus
need to be minimized.

Discussion
Robustness with Respect to Assignment of Dissociation Constants. It
often has been conjectured that the qualitative dynamical proper-
ties of biological networks to a large extent are determined by their
topology rather than by quantitative parameters of individual
interactions such as their kinetic or equilibrium constants (for a

classic success story see, e.g., ref. 12). Our results generally support
this conjecture, yet go one step further: we observe that the
response of reversible protein–protein-binding networks to large
changes in concentrations strongly depends not only on topology
but also on abundances of participating proteins. Indeed, pertur-
bations tend to preferentially propagate via paths in the network in
which abundances of intermediate proteins monotonically decrease
along the path (see Fig. 3). Thus, by varying protein abundances
while strictly preserving the topology of the underlying network,
one can select different conduits for propagation of perturbations.

On the other hand, our results indicate that these conduits are to
a certain degree insensitive to the choice of dissociation constants.
In particular, we found (see Fig. 5) that equilibrium concentrations
of dimers and the remaining free (unbound) concentrations of
individual proteins calculated for two different Kij assignments
[Kij � const � 5 nM and Kij � max(Ci, Cj)/20 with the inverse mean
of 5 nM] had a high Spearman rank correlation coefficient of 0.89
and even higher linear Pearson correlation coefficient of 0.98. The
agreement was especially impressive in the upper part of the range
of dimer concentrations (see Fig. 5). For example, the typical
difference between dimer concentrations above 1,000 molecules
per cell was measured to be as low as 40%. As we demonstrated
above, it is exactly these highly abundant heterodimers that form the
backbone for propagation of concentration perturbations. Thus, it
should come as no surprise that sets of concentration-coupled
protein pairs observed for different Kij assignments also have a large
(�70–80%) overlap with each other (see SI Table 4).

Such degree of robustness with respect quantitative parameters
of interactions can be explained partially by the following obser-
vation: proteins whose abundance is higher than the sum of
abundances of all of their binding partners cannot be fully seques-
tered into heterodimers for any assignment of dissociation con-
stants. As we argued above, such proteins with substantial unbound
concentrations considerably dampen the propagation of perturba-
tions and thus cannot participate in highly conductive chains.
Another argument in favor of this apparent robustness is based on
extreme heterogeneity of wild-type protein abundances (in the data
set of ref. 4 they span 5 orders of magnitude). In this case,
concentrations of heterodimers depend more on relative abun-
dances of two constituent proteins than on the corresponding
dissociation constant (within a certain range).

A B C

Fig. 3. Three views of a subset of 312 highly abundant nodes in a protein-binding network. (A) All binding links between these nodes. (B) Binding links
characterized by high concentration of heterodimers (�1,000 molecules per cell). (C) Concentration-coupled proteins A 3 B with the property that a 2-fold
increase in the abundance A reduces free concentration of its immediate binding partner B by 20% or more. Note that links roughly coincide with highly abundant
dimers shown in B. Arrows reveal the preferential direction of propagation of perturbations.
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Fig. 4. Parameters of the eight three-step chains that exhibit the best
transduction of concentration changes. Heterodimer concentrations Dij (A)
for three binding links along the chain. Total concentrations Ci (B) and
free-to-total concentration ratios Fi /Ci (C) of the four proteins involved in
these chains. Dashed lines correspond to network-wide geometric averages of
the corresponding quantities: �Dij� � 100 copies per cell, �Ci� � 3,000 copies per
cell, and �Fi /Ci� � 13%.
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In a separate numerical control experiment, we verified that the
main results of this study are not particularly sensitive to false
positives and false negatives in the network topology inevitably
present even in the best curated large-scale data. The percentage of
concentration-coupled pairs surviving a random removal or addi-
tion of 20% of links in the network generally ranges between 60%
and 80% (see SI Table 5).

Genetic Interactions. The effects of concentration perturbations
discussed above could explain some of the genetic interactions
between proteins. Consider for example a ‘‘dosage rescue’’ of a
protein A by a protein B or the correction of an abnormal
phenotype caused by deletion or other type of inactivation of A by
overexpression of B. One possible mechanism behind this effect is
that the knockout of A and overexpression of B affect the LMA
equilibrium in opposite directions and to some extent cancel one
another. In order for this mechanism to be applicable (albeit
tentatively), concentrations of both A and B must be coupled
simultaneously (in the sense used throughout this work) to at least
one crucial protein C whose free or bound concentration has to be
maintained at or close to wild-type levels. To assess this hypothesis,
we analyzed the set of 772 dosage rescue pairs (3) involving proteins
from the PPI network used in this study. For 136 pairs (or 18% of
all dosage rescue pairs), we were able to identify one or more
putative ‘‘rescued’’ protein whose free concentration was consid-
erably (by �20%) affected by changes in abundances of both A and
B (see SI Table 6). This overlap is highly statistically significant,
having the Fisher’s exact test P value of �10�216. Even more
convincing evidence that perturbations to the LMA equilibrium
state cause some of genetic interactions is presented in Fig. 6. It
plots the fraction of protein pairs at distance L from each other in
the PPI network that are known to dosage rescue each other. From
Fig. 6, it can be concluded that proteins separated by distances 1,

2, and 3 are significantly more likely to genetically interact with each
other than one expects by pure chance alone [the expected back-
ground level is marked with a dashed line (772/1,7402) or, better yet,
visible as a plateau for large values of L]. Furthermore, the slope of
the exponential decay in the fraction of dosage rescue pairs as a
function of L is roughly consistent with that shown in Fig. 2 for the
fraction of concentration-coupled pairs.

Possibility of Functional Signaling and Regulation Mediated by Mul-
tistep Reversible Protein Interactions. Another intriguing possibility
raised by our findings is that multistep chains of reversible protein–
protein bindings in principle might be involved in meaningful
intracellular signaling and regulation.

There are many well documented cases in which one-step
‘‘chains’’ are used to reversibly deactivate individual proteins by the
virtue of sequestration with their binding partner(s). An example
involving a longer regulatory chain of this type is the control of
activity of condition-specific sigma factors in bacteria. In its bio-
logically active state, a given sigma factor is bound to the RNA
polymerase complex. Under normal conditions, it commonly is kept
in an inactive form by the virtue of a strong binding with its specific
anti-sigma factor (anti-sigma factors are reviewed in ref. 13). In
several known cases, the concentration of the anti-sigma factor in
turn is controlled by its binding with the specific anti-anti-sigma
factor (13). The existence of such experimentally confirmed three-
step regulatory chains in bacteria hints at the possibility that at least
some of the longer conduits we detected in yeast could be used in
a similar way.

Application to Microarray Data Analysis. To unequivocally detect
cascading perturbations, in our simulations we always modified the
total concentration of just one protein at a time. In more realistic
situations, expression levels of a whole cluster of genes change, for
example, in response to a shift in environmental conditions. Our
general methods easily could be extended to incorporate this
scenario. With the caveat that changes in expression levels of genes
reflect changes in overall abundances of corresponding proteins,
our algorithm allows one to calculate the impact of an external or
internal stimulus measured in a microarray on free and bound
concentrations of all proteins in the cell. Including such indirectly
perturbed targets could considerably extend the list of proteins
affected by a given shift in environmental conditions. Simultaneous
shifts in expression levels of several genes may amplify changes of
free concentrations of some proteins and/or mutually inhibit
changes of others.

Effects of Intracellular Noise. Another implication of our findings is
for intracellular noise, or small random changes in total concen-
trations Ci of a large number of proteins. The randomness, smaller
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Fig. 5. The scatter plot of 4,185 bound concentrations Dij (A) and 1,740 free
concentrations Fi (B) calculated for two different assignments of dissociation
constants to links in the PPI network. The x axis was computed for the homoge-
neous assignment Kij � const � 5 nM, whereas the y axis was computed for the
heterogeneous assignment Kij � max(Ci, Cj)/20 with the same average strength.
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heterogeneous assignment nearly eliminates free or bound concentrations in a
biologically unreasonable range �1 molecule per cell.
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Fig. 6. The fraction of dosage rescue protein pairs separated by distance L in
the PPI network. Note that pairs at distances 1, 2, and 3 are significantly
overrepresented over the background level marked with dashed line or visible
as a plateau at large distances L. The exponential decay constant at low values
of L is consistent with that in Fig. 2.
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magnitude, and sheer number of the involved proteins characterize
the differences between such noise and systematic severalfold
changes in the total concentration of one or several proteins
considered above. Our methods allow one to decompose the
experimentally measured (9) noise in total abundances of proteins
into biologically meaningful components (free concentrations and
bound concentrations within individual protein complexes). Given
a fairly small magnitude of fluctuations in protein abundances [on
average �20% (9)], one could safely employ a computationally
efficient linear response algorithm (see ref. 11). Several recent
studies (9, 14, 15) distinguish between the so-called extrinsic and
intrinsic noise. The extrinsic noise corresponds to synchronous or
correlated shifts in abundance of multiple proteins, which, among
other things, could be attributed to variation in cell sizes and their
overall mRNA and protein production or degradation rates. Con-
versely, the intrinsic noise is attributable to stochastic fluctuations
in production and degradation and thus lacks correlation between
different proteins. We found that extrinsic and intrinsic noise affect
equilibrium concentrations of proteins in profoundly different ways.
In particular, although multiple sources of the extrinsic noise
partially (yet not completely) cancel each other, intrinsic noise
contributions from several sources sometimes can add up and cause
considerable fluctuations in equilibrium free and bound concen-
trations of particular proteins (see SI Fig. 10).

Limitations of the Current Approach and Directions for Further Stud-
ies. In our study, we used a number of fundamental approximations
and idealizations including the assumption of spatially uniform
concentrations of proteins, the neglect of temporal dynamics, or,
equivalently, the assumption that all concentrations have sufficient
time to reach their equilibrium values, the continuum approxima-
tion neglecting the discrete nature of proteins and their bound
complexes, etc. Another set of approximations was mostly attrib-
utable to the lack of reliable large-scale data quantifying these
effects. They include not taking into account the effects of coop-
erative binding within multiprotein complexes, using a relatively
small number (81) of well curated multiprotein complexes used in
our study (see SI Appendix), neglecting systematic changes in
protein abundances in the course of the cell cycle, etc. We do not
expect these effects to significantly alter our main qualitative
conclusions, namely, the exponential decay of the amplitude of
changes in equilibrium concentrations, the existence of 3- to 4-step
chains that nevertheless successfully propagate concentration
changes, and the general conditions that enhance or inhibit such
propagation.

In the future, we plan to extend our study of fluctuations in
equilibrium concentrations by incorporating the effects of protein
diffusion (nonuniform spatial concentration) and kinetic effects.
Another interesting avenue for further research is to apply the
concept of ‘‘potential energy landscape’’ (for definitions see ref. 16
and references therein) to reversible processes governed by the
LMA, such as, for example, the equilibrium in protein-binding
networks. In the past, this concept was applied to processes
involving catalytic, irreversible protein–protein interactions such as,
for example, phosphorylation by kinases or regulation by transcrip-
tion factors. In this case, it helped to reveal the robustness of

regulatory networks in the cell cycle (17) and in a simple two-
protein toggle switch (18).

Methods
Source of Interaction and Concentration Data. The curated PPI
network data used in our study is based on the 2.020 release of the
BIOGRID database (3). We kept only pairs of physically interact-
ing proteins that were reported in at least two publications using the
following experimental techniques: affinity capture-MS (28,172
pairs), affinity capture-RNA (55 pairs), affinity capture-Western
blotting (5,710 pairs), cocrystal structure (107 pairs), FRET (43
pairs), far Western blotting (41 pair), and two-hybrid (11,935 pairs).
That left us with 5,798 nonredundant interacting pairs. Further
restriction for both proteins to have experimentally measured total
abundance (4) narrowed it down to 4,185 distinct interactions
among 1,740 yeast proteins.

The list of manually curated yeast protein complexes was ob-
tained from the latest release (May 2006) of the MIPS CYGD
database (19, 20). This database contains 1,205 putative protein
complexes, 326 of which are not coming from systemic analysis
studies (high-throughput MS experiments). In the spirit of using
only the confirmed PPI data, we limited our study to these curated
complexes. For 99 of these complexes, the MIPS database lists three
or more constituent proteins. After elimination of proteins with
unknown total concentrations, we were left with 81 multiprotein
complexes.

Genetic interactions of dosage rescue type also were obtained
from the BIOGRID database. There are 772 pairs of dosage rescue
interactions among 1,740 proteins participating in our PPI network
(the full list contains 2,531 dosage rescue pairs).

Numerical Algorithms. The numerical algorithm calculating all free
concentrations Fi given the set of total concentrations Ci and the
matrix of dissociation constants Kij was implemented in MATLAB
7.1 and is available from S.M. on request. It consists of iterating Eq.
1 starting with Fi � Ci. Iterations stop once relative change of free
concentration on every node in the course of one iteration step
becomes smaller than 10�8, which for networks used in our study
takes less than a minute on a desktop computer. When necessary,
multiprotein complexes are incorporated into this algorithm as
described in SI Appendix.

The effects of large concentration perturbations was calculated
by recalculating free concentrations after a 2-fold increase in
abundance of a given perturbed protein. The effects of small
perturbations such as those of concentration fluctuations were
calculated by using the faster linear response matrix formalism
described elsewhere (11).
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